1. Introduction

This document describes the derivation of a PID controller that can be implemented in the brew application. The PID controller should be capable of controlling the temperature of the Hot Liquid Tun (HLT, 90 L) to within 0.5 °C. The HLT contains a heating element of 3 kW, which is driven by the PID controller output signal Gamma [0..10 %]. The HLT temperature sensor is a LM92 12 bit + sign bit, ± 0.33°C accurate temperature sensor.

This document contains the following information:
- Chapter 2: Derivation of a time-discrete algorithm for a PID controller
- Chapter 3: Derivation of an improved algorithm (a so-called ‘type C’ PID controller)
- Chapter 4: Description of algorithms for finding the optimum set of K_c, T_i, T_d and T_s values of the PID controller
- Chapter 5: Experimental results
- An appendix containing the C source listing

2. Derivation of a time-discrete algorithm for a PID controller

The generic equation for a PID controller in the time-continuous domain is:

$$u(t) = K_c \left[e(t) + \frac{1}{T_i} \int e(\tau) d\tau + T_d \frac{de(t)}{dt} \right] \quad eq. \ 01$$

With:
- $K_c = K_p$ Proportional Gain (for our temperature controller, unity is [% / °C])
- $T_i = K_c / K_i$ Time-constant Integral gain [sec.]
- $T_d = K_d / K_c$ Time-constant Derivative gain [sec.]
- T_s Sample period (default value is 5 seconds)
- $w(t)$ Set point (SP) value for temperature. Is also called $T_{set_{hlit}}$ in this document
- $e(t)$ error signal = set-point $w(t)$ – process variable $y(t) = T_{set_{hlit}} - T_{hlit}$
- $u(t)$ PID output signal, also called Gamma, ranges from [0..100 %]
- $y(t)$ process variable PV = measured temperature (also called T_{hlit} in this document)

The corresponding equation in the s-domain is then:

$$\frac{U(s)}{E(s)} = K_c \left[1 + \frac{1}{T_i s} + T_d s \right] \quad eq. \ 02$$

This transfer function has no real practical use, since the gain is increased as the frequency increases. Practical PID controllers limit this high frequency gain, using a first order low-pass filter. This results in the following transfer function:

1 This is the ideal, textbook version of a continuous-time PID controller. See [1], page 54.
where γ is a small time-constant and may be set as 10% of the value of the derivative term T_d.

Equation eq. 03 needs to be transferred to the Z domain to make it suitable for implementation on a computer. This is done using the bilinear transformation (given in eq. 04):

The bilinear transformation formula is given with:

$$ s = \frac{2}{T_s} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} \quad \text{eq. 04} $$

Now use the bilinear transformation, given in equation eq. 04, to transform equation eq. 03 onto an equivalent form in the Z-domain:

$$ \frac{U(z)}{E(z)} = K_c \left(1 + \frac{T_i}{2T_i} \cdot \frac{1 + z^{-1}}{1 - z^{-1}} + \frac{T_d}{T_i} \cdot \left(\frac{1 - z^{-1}}{\gamma (1 - z^{-1}) + \frac{T_d}{2} \left(1 + z^{-1} \right)} \right) \right) \quad \text{eq. 05-1} $$

This transforms into:

$$ \frac{U(z)}{E(z)} = K_c \left(1 + \frac{T_i}{2T_i} \cdot \frac{1 + z^{-1}}{1 - z^{-1}} + \frac{2T_d}{T_i + 2\gamma} \cdot \frac{1 - z^{-1}}{1 + z^{-1} \cdot \frac{T_d}{T_i + 2\gamma}} \right) \quad \text{eq. 05-2} $$

$$ \frac{U(z)}{E(z)} = K_c \left(1 + \frac{T_i}{2T_i} \cdot \frac{1 + z^{-1}}{1 - z^{-1}} + \frac{2T_d}{T_i + 2\gamma} \cdot \frac{1 - z^{-1}}{1 + z^{-1} \cdot \frac{T_d}{T_i + 2\gamma}} \right) \quad \text{eq. 05-3} $$

Now, let all separate parts share the same denominator:

$$ \frac{U(z)}{E(z)} = K_c \left(\frac{(1 - z^{-1}) \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} \right) + \frac{T_i}{2T_i} \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} \right) + \frac{2T_d}{T_i + 2\gamma} \left(1 - z^{-1} \right)^2}{(1 - z^{-1}) \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} \right) + \frac{T_i}{2T_i} \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} \right) + \frac{2T_d}{T_i + 2\gamma} \left(1 - z^{-1} \right)^2} \right) \quad \text{eq. 05-4} $$

Rewrite equation eq.05-4 and combine all parts of z^{-1} and z^{-2} with each other:

$$ \frac{U(z)}{E(z)} = K_c \left(\frac{1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} - z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{T_i}{2T_i} \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{2T_d}{T_i + 2\gamma} \left(1 - z^{-1} + z^{-2} \right) \right)}{1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} - z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{T_i}{2T_i} \left(1 + z^{-1} \cdot \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{T_d - 2\gamma}{T_i + 2\gamma} + \frac{2T_d}{T_i + 2\gamma} \left(1 - z^{-1} + z^{-2} \right) \right)} \right) \quad \text{eq. 05-5} $$

Simplifying the various terms results in:
PID Controller Calculus for HERMS home-brewing system

\[
U(z) = K_c \left(\frac{1 + \frac{T_s}{2T_i} + \frac{2T_d}{T_i + 2\gamma}}{T_s + 2\gamma} + z^{-1} \left(\frac{T_s^2 - 4\gamma - 4T_d}{T_s + 2\gamma} \right) + z^{-2} \cdot \frac{2\gamma - T_s + \frac{T_s(T_s - 2\gamma)}{2T_i} + 2T_d}{T_s + 2\gamma} \right) \]

(eq.05-6)

Now define the following parameters:

\[
k_0 = K_c \left(1 + \frac{T_s}{2T_i} + \frac{2T_d}{T_i + 2\gamma} \right) ; \quad k_1 = K_c \left(\frac{T_s^2 - 4\gamma - 4T_d}{T_s + 2\gamma} \right)
\]

(eq.06)

\[
k_2 = K_c \left(\frac{2\gamma - T_s + \frac{T_s^2 - \gamma T_s + 2T_d}{T_s + 2\gamma}}{T_s + 2\gamma} \right) ; \quad p_1 = \frac{4\gamma}{T_s + 2\gamma} ; \quad p_2 = \frac{T_s - 2\gamma}{T_s + 2\gamma}
\]

Substituting these parameters back into equation 05-6 results in:

\[
U(z) \left(1 - p_1 z^{-1} - p_2 z^{-2} \right) = E(z) \left(k_0 + k_1 z^{-1} + k_2 z^{-2} \right)
\]

(eq. 07)

Transforming equation eq. 07 back to the time-discrete form results in:

\[
u[k] = p_1 u[k - 1] + p_2 u[k - 2] + k_0 e[k] + k_1 e[k - 1] + k_2 e[k - 2]
\]

(eq. 08)

Equation eq.08 is implemented with **pid_reg2()** and eq.07 is implemented with **init_pid2()** (see appendix for full C source listing).
3. Derivation of a Type C PID controller

There are three types of PID equations (see http://bestune.50megs.com/typeabc.htm), with type C being the preferred one. Equation eq. 01 (and ultimately eq. 08) are type A equations, since the P- and the D-term both contain the set-point. Any changes in the set-point may cause an unwanted change in the PID output \(u(t) \).

Removing the set-point from the D-term results in a type B controller. The type C controller has also removed the set-point from the P-term, resulting in an even better PID controller implementation.

Starting with equation 01 and differentiating both sides gives equation eq. 09

\[
du(t) = K_i \frac{de(t)}{dt} + \frac{e(t)}{T_s} + \frac{d^2e(t)}{dt^2}
\]
(eq. 09)

Transforming equation eq. 09 to the time-discrete domain, using backwards differentiation, results in equation eq. 10:

\[
u_k = u_{k-1} + K_i \left[e_k - e_{k-1} + \frac{T_s e_k}{T_i} + \frac{T_d}{T_s} \left(e_k - 2e_{k-1} + e_{k-2} \right) \right]
\]
(eq. 10)

The D-term needs to be filtered with a Low-Pass Filter (LPF) to make it more practical. The transfer function of a simple LPF is given with:

\[
H(s) = \frac{1}{\gamma s + 1}, \text{ with } \gamma \text{ typically set to about 10\% of the } T_d \text{ value.}
\]
(eq. 11a)

The equivalent Z transfer function is:

\[
H(z) = \frac{T_s \left(1 - z^{-1} \right)}{2 \gamma \left(1 - z^{-1} \right) + T_s \left(1 + z^{-1} \right)} = \frac{T_s}{T_s + 2 \gamma} \cdot \frac{1 + z^{-1}}{1 + \frac{T_s - 2 \gamma}{T_s + 2 \gamma} z^{-1}}
\]
(eq. 11b)

The equivalent function is the time-discrete domain is then:

\[
lpf' = \frac{2 \gamma - T_s \cdot lpf_{k-1} + \frac{T_s}{T_s + 2 \gamma} (e_k + e_{k-1})}{2 \gamma + T_s}
\]
(eq. 11c)

Equation eq.10 can now also be written as:

\[
u_k = u_{k-1} + K_i \left[e_k - e_{k-1} + \frac{T_s e_k}{T_i} + \frac{T_d}{T_s} \cdot \left(lpf_k - 2lpf_{k-1} + lpf_{k-2} \right) \right]
\]
(eq. 12)

Equation 12 is still a type A equation (“textbook PID”), because the \(K_i \) term depends on \(e_k \) and the input of the LPF also has \(e_k \) as input. Equation eq.11c and eq.12 are implemented with \texttt{pid_reg3()} and with \texttt{init_pid3()} (see appendix for full C source listing).
Because it is not easy to transform this equation into a full type C controller (because of the addition in eq.11c), we will revert to equation eq.10 and transform this equation into a type C equation (eq. 13):

\begin{equation}
 u_k = u_{k-1} + K_c \left[(e_k - e_{k-1}) + \frac{T_d}{T_i} (e_k - 2e_{k-1} + e_{k-2}) \right] \tag{eq. 10}
\end{equation}

\begin{equation}
 u_k = u_{k-1} + K_c \left[SP_k - PV_k - (SP_{k-1} - PV_{k-1}) + \frac{T_d}{T_i} (SP_k - PV_k - 2(SP_{k-1} - PV_{k-1}) + SP_{k-2} - PV_{k-2}) \right] \tag{eq. 13}
\end{equation}

Here, PV is the process variable, which is \(T_{\text{HLT}} \) (the actual temperature of the HLT). Furthermore SP is the set-point or the reference temperature.

If we assume that the set-point is not changed, we can state the \(PV_k = PV_{k-1} = PV_{k-2} \). With this, the equation transforms into:

\begin{equation}
 u_k = u_{k-1} + K_c \left[(PV_{k-1} - PV_k) + \frac{T_d}{T_i} (2PV_{k-1} - PV_k - PV_{k-2}) \right] \tag{eq. 14}
\end{equation}

Equation 14 is a type C PID controller and normally referred to as a Takahaski PID controller. This equation is implemented with \texttt{pid_reg4()} and with \texttt{init_pid4()} (see appendix for full C source listing).
4. Finding the optimum set of PID parameters

Finding the optimum parameters for a PID controller can be difficult. Optimum means that the set-point temperature is reached as quickly as possible with overshoot minimised.

Three well-known algorithms for determining the PID parameters are described here:

- **Ziegler-Nichols open-loop**: set PID controller to a certain output and determine slope and dead-time of HLT system
- **Ziegler-Nichols closed-loop**: measure step-response
- **Cohen-Coon**: also a closed-loop method. Measure step-response
- **Integral of the time weighted absolute error (ITAE)**: results in the best performance. The error signal is minimised (over time).

Some terms are frequently used in this document:

- **Dead-time \(\Theta \)**: this is the time-delay between the initial step and a 10% increase in the process variable (the HLT temperature in our case).
- **\(K_{hlt} \)**: the gain of the HLT-system. The HLT-system receives the Gamma value (PID output) as input and has the HLT temperature as output. Unity of \(K_{hlt} \) is \([^\circ C / \%]\).
- **\(\tau_{hlt} \)**: the time-constant of the HLT-system. The HLT-system can be described with a first-order process model with time-delay (FOPTD). The transfer function for this model is:
 \[
 HLT(s) = \frac{K_{hlt} e^{-\Theta s}}{\tau_{hlt} s + 1}
 \]
- **a*: the normalised slope of the step response. Equal to \(\Delta T / (\Delta t \cdot \Delta p) \) with:
 - \(\Delta T \): change in temperature \([^\circ C]\)
 - \(\Delta t \): change in time \([\text{seconds}]\)
 - \(\Delta p \): change in PID controller output \([\%]\)

With these three parameters, the optimum PID parameters are determined using table 1 on the next page (values are given both for PID operation and for PI-only operation):
Method: PID Controller Calculus for HERMS home-brewing system

<table>
<thead>
<tr>
<th>Method: / Parameter:</th>
<th>K_c [% / °C]</th>
<th>T_i [seconds]</th>
<th>T_d [seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziegler-Nichols Open-loop</td>
<td>$K_c = \frac{1.2}{\theta_{a^*}}$</td>
<td>$T_i = 2.0\theta$</td>
<td>$T_d = 0.5\theta$</td>
</tr>
<tr>
<td>Ziegler-Nichols Open-loop</td>
<td>$K_c = \frac{0.9}{\theta_{a^*}}$</td>
<td>$T_i = 3.33\theta$</td>
<td>- -</td>
</tr>
<tr>
<td>Ziegler-Nichols Closed-loop</td>
<td>$K_c = \frac{1.2\tau_{hlt}}{K_{hl}}\theta$</td>
<td>$T_i = 2.0\theta$</td>
<td>$T_d = 0.5\theta$</td>
</tr>
<tr>
<td>Ziegler-Nichols Closed-loop</td>
<td>$K_c = \frac{0.9\tau_{hlt}}{K_{hl}}\theta$</td>
<td>$T_i = 3.33\theta$</td>
<td>- -</td>
</tr>
<tr>
<td>Cohen-Coon</td>
<td>$K_c = \frac{\tau_{hlt}}{K_{hl}}\theta \left(\frac{\theta}{4.4\tau_{hlt} + 3}\right)$</td>
<td>$T_i = \theta \left(\frac{32\tau_{hlt} + 6\theta}{13\tau_{hlt} + 8\theta}\right)$</td>
<td>$T_d = \theta \left(\frac{4\tau_{hlt}}{2\theta + 11\tau_{hlt}}\right)$</td>
</tr>
<tr>
<td>Cohen-Coon</td>
<td>$K_c = \frac{\tau_{hlt}}{K_{hl}}\theta \left(\frac{\theta}{12\tau_{hlt} + 10}\right)$</td>
<td>$T_i = \theta \left(\frac{30\tau_{hlt} + 3\theta}{9\tau_{hlt} + 20\theta}\right)$</td>
<td>- -</td>
</tr>
<tr>
<td>ITAE-Load</td>
<td>$K_c = \frac{1.357}{K_{hl}}\theta \left(\frac{\theta}{\tau_{hlt}}\right)^{-0.947}$</td>
<td>$T_i = \frac{\tau_{hlt}}{0.842} \left(\frac{\theta}{\tau_{hlt}}\right)^{0.738}$</td>
<td>$T_d = 0.381\tau_{hlt} \left(\frac{\theta}{\tau_{hlt}}\right)^{0.995}$</td>
</tr>
<tr>
<td>ITAE-Load</td>
<td>$K_c = \frac{0.859}{K_{hl}}\theta \left(\frac{\theta}{\tau_{hlt}}\right)^{-0.977}$</td>
<td>$T_i = \frac{\tau_{hlt}}{0.674} \left(\frac{\theta}{\tau_{hlt}}\right)^{0.680}$</td>
<td>- -</td>
</tr>
</tbody>
</table>

Table 1: optimum PID parameters for the various methods

To be able to find these three parameters accurately, two experiments need to be conducted. These two experiments are described in the next two paragraphs. The last paragraph (§ 4.3) shows the calculated PID parameters for all these methods.
4.1 Experiment 1: Determine dead-time Θ of HLT-system

Manually set the PID-controller output ("gamma") to a certain value (e.g. 20 %). In case of a heavy load, 100 % is recommended (more accurate), but if you don’t know the performance of the system, a lower value to start with is better. The temperature starts to increase and follows the curve in figure 1.

Calculate the average slope of the rise ($a = \Delta T / \Delta t$) by using regression analysis if possible.

Calculate the normalised slope a^*, which is defined as: $a^* = a / \Delta p$.

The dead-time Θ is defined as the time between t_0 and t_1 (by using regression analysis, this can be done quite accurately).

Experimental data:

2 HLT filled with 85 L water, lid off

19:08:20 t_0, the PID controller output gamma was set to 100 %, $T_1 = 47.41 \, ^\circ C$

Step-response up to 55.00 °C, $\Delta T = 7.59 \, ^\circ C$

19:12:25 $T_{\text{ult}} = 48.18 \, ^\circ C \geq T_1 + 10\% \cdot \Delta T = 48.17 \, ^\circ C$

19:27:21 $T_{\text{ult}} = 54.25 \, ^\circ C \geq T_1 + 90\% \cdot \Delta T = 54.24 \, ^\circ C$

Regression analysis of the data between 19:12:25 and 19:27:21 resulted in the following:

$y = a \cdot x + b = 0.0334x + 48.278 \quad R^2 = 0.9995$

Here, every data-point for x represents 5 seconds. Therefore, the average slope a is equal to:

$a = 0.0334 \, ^\circ C / 5 \, \text{sec.} \quad = 6.68E-03 \, ^\circ C/\text{second} \quad \text{(which is 0.4 \, ^\circ C/minute)}$

Now solve where this curve hits the Tenv line:

Figure 1: Open-loop response of the system

Measurements are recorded in HLT_open_loop_response_260404.xls
The dead-time moment is then 19:12:25 – 2:10 = 19:10:15
Therefore, the dead-time $\Theta = 19:10:15 – 19:08:20 = 1:55 = 115$ seconds

The normalised slope a^* is equal to:
$$a^* = a / \Delta p = 6.68E-05 \, ^\circ C/(-.second)$$

4.2 Experiment 2: Determine gain K_{hlt} and time-constant τ_{hlt} of HLT-system

Manually set the PID-controller output (“gamma”) to a certain value (e.g. 20 %). The temperature starts to increase and follows the curve in figure 2.

![Figure 2: Step response of the system](image)

Because of the large time-constant presumably present in the HLT system, the step response is not very accurate in determining the dead-time Θ. This is the mean reason to conduct two experiments (theoretically, the step-response would give you all the required information to determine the three parameters).

Experimental data:

- HLT filled with 85 L water, lid off

 09:49:04 t_0, the PID controller output gamma was set to 20 %, $T_1 = 19.20 \, ^\circ C$
 20:24:03 Experiment stopped, $T = 52.98 \, ^\circ C$
 Regression analysis (2nd order polynomial) used to find maximum.
 Maximum found at 21:20:44 (8300 ticks of 5 seconds). $T_2 = 52.989 \, ^\circ C$
 $\Delta T = 52.989 – 19.20 = 33.789 \, ^\circ C$
 $T(t = 1/3. \tau_{hlt}) = T_1 + 0.283 \times \Delta T = 28.762 \, ^\circ C \Rightarrow 1/3. \tau_{hlt} = 6599$ seconds
 $T(t = \tau_{hlt}) = T_1 + 0.632 \times \Delta T = 40.555 \, ^\circ C \Rightarrow \tau_{hlt} = 16573$ seconds
 Solve for τ_{hlt}: $\tau_{hlt} – 1/3. \tau_{hlt} = 16573 – 6599 \Rightarrow \tau_{hlt} = 14961$ seconds

 Solve for Gain K_{hlt}: $K_{hlt} = \Delta T / \Delta p = 33.789 \, ^\circ C / 20 \% = 1,689 \, ^\circ C / %$

3Measurements are recorded in HLT_step_response_290404.xls
4.3 Calculation of PID parameters for the various methods

In the previous paragraphs, the following parameters were found:

- **dead-time** $\Theta = 115$ seconds
- **Gain** $K_{ht} = 1,689 \, ^{\circ}{\text{C}} / \%$
- **Time-constant** $\tau_{ht} = 14961$ seconds
- **Normalised slope** $a^* = a / \Delta p = 6,68E-05 \, ^{\circ}{\text{C}}/(\% \, \text{second})$

<table>
<thead>
<tr>
<th>Method</th>
<th>K_c [%/°C]</th>
<th>T_i [sec]</th>
<th>T_d [sec]</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziegler-Nichols Open Loop</td>
<td>156.2</td>
<td>230.0</td>
<td>57.5</td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>117.2</td>
<td>383.0</td>
<td>-</td>
<td>PI</td>
</tr>
<tr>
<td>Ziegler-Nichols Closed Loop</td>
<td>92.4</td>
<td>230.0</td>
<td>57.5</td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>69.3</td>
<td>383.0</td>
<td>-</td>
<td>PI</td>
</tr>
<tr>
<td>Cohen-Coon</td>
<td>102.8</td>
<td>282.2</td>
<td>41.8</td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>69.4</td>
<td>377.2</td>
<td>-</td>
<td>PI</td>
</tr>
<tr>
<td>ITAE-Load</td>
<td>80.8</td>
<td>489.0</td>
<td>44.9</td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>59.2</td>
<td>810.2</td>
<td>-</td>
<td>PI</td>
</tr>
</tbody>
</table>

Table 2: Calculation of parameters for the various methods
Referenced Documents

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Title:</th>
<th>Author</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
<td>“Digital Self-Tuning Controllers”,</td>
<td>V. Bobál, J.</td>
<td>[01]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISBN 1-85233-980-2, Springer</td>
<td>Böhm, J. Fessl,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. Machácek</td>
<td></td>
</tr>
</tbody>
</table>

Version History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02-2003</td>
<td>V1.0</td>
<td>First version for display on web-site</td>
</tr>
</tbody>
</table>
| 08-03-2004| V2.0 | - Removed implementation 1 and 3
- Added description of types A, B and C
- Added type C PID algorithm
- Added auto-tuning algorithm + example |
| 10-03-2004| V2.1 | Incorrect dead-time calculation |
| 09-05-2004| V2.2 | - Added Cohen-Coon + ITAE methods
- Added two experiments + description
- Calculations are updated |
| 10-05-2004| V3.0 | - Derivation with Taylor series replaced by exact derivation. Current implementation worked well, but simulation showed problems |
| 13-05-2004| V3.01 | - Update of document, corrected a few mistakes
- Add low-pass filter to the D-term of the PID-controllers |
| 13-05-2004| V3.02 | Some textual changes |
| 09-05-2006| V3.03 | Error corrected in equation eq.09 |
| 26-02-2007| V3.10 | - Referenced documents added
- Typo corrected in eq.08
- Block diagram added
- Source code shortened, non-relevant code removed
- More consistent naming of variables
- More elaborate derivation in chapter 2. |
| 06-05-2011| V3.20 | - Better derivation for pid_reg3() and pid_reg4(). Pid_reg3() is now a type A PID controller with filtering of the D-action. Pid_reg4() is now a pure Takahashi type C PID controller. |
Appendix I: C-programs (pid_reg.h, pid_reg.c)

/*==
File name : $Id: pid_reg.h,v 1.7 2004/05/13 20:51:00 emile Exp $
Author : E. vd Logt
--
Purpose : This file contains the defines for the PID controller.
--
$Log: pid_reg.h,v $
Revision 1.7 2004/05/13 20:51:00 emile
V0.1 060302 First version
==*/
#ifndef PID_REG_H
#define PID_REG_H

#ifdef __cplusplus
extern "C" {
#endif

// These defines are needed for loop timing and PID controller timing
#define TWENTY_SECONDS (400)
#define TEN_SECONDS (200)
#define FIVE_SECONDS (100)
#define ONE_SECOND (20)
#define T_50MSEC (50) // Period time of TTTimer in msec.
#define GMA_HLIM (100.0) // PID controller upper limit [%]
#define GMA_LLIM (0.0) // PID controller lower limit [%]

typedef struct _pid_params
{
 double kc; // Controller gain from Dialog Box
 double ti; // Time-constant for I action from Dialog Box
 double td; // Time-constant for D action from Dialog Box
 double ts; // Sample time [sec.] from Dialog Box
 double k_lpf; // Time constant [sec.] for LPF filter
 double k0; // k0 value for PID controller
 double k1; // k1 value for PID controller
 double k2; // k2 value for PID controller
 double k3; // k3 value for PID controller
 double lpf1; // value for LPF filter
 double lpf2; // value for LPF filter
 int ts_ticks; // ticks for timer
 int pid_model; // PID Controller type [0..3]
 double pp; // debug
 double pi; // debug
 double pd; // debug
} pid_params; // struct pid_params

#ifdef __cplusplus
};
#endif
#endif

#define TWENTY_SECONDS (400)
#define TEN_SECONDS (200)
#define FIVE_SECONDS (100)
#define ONE_SECOND (20)
#define T_50MSEC (50) // Period time of TTTimer in msec.
#define GMA_HLIM (100.0) // PID controller upper limit [%]
#define GMA_LLIM (0.0) // PID controller lower limit [%]

// Function Prototypes

void init_pid2(pid_params *p);
void pid_reg2(double xk, double *yk, double tset, pid_params *p, int vrg);
void init_pid3(pid_params *p);
void pid_reg3(double xk, double *yk, double tset, pid_params *p, int vrg);
void init_pid4(pid_params *p);
void pid_reg4(double xk, double *yk, double tset, pid_params *p, int vrg);

#ifdef __cplusplus
};
#endif

PID Controller Calculus, V3.20 Page 12/16 © ir. drs. E.H.W. van de Logt
PID Controller Calculus for HERMS home-brewing system

/*==
Function name: init_pid2(), pid_reg2()
init_pid3(), pid_reg3(), init_pid4(), pid_reg4()
Author : E. vd Logt
File name : $Id: pid_reg.c,v 1.6 2004/05/13 20:51:00 emile Exp $
--
Purpose : This file contains the main body of the PID controller.
For design details, please read the Word document
"PID Controller Calculus".
In the GUI, the following parameters can be changed:
Kc: The controller gain
Ti: Time-constant for the Integral Gain
Td: Time-constant for the Derivative Gain
Ts: The sample period [seconds]
--
$Log: pid_reg.c,v $
Revision 1.6 2004/05/13 20:51:00 emile
==
*/
#include "pid_reg.h"
static double ek_1; // e[k-1] = SP[k-1] - PV[k-1] = Tset_hlt[k-1] - Thlt[k-1]
static double xk_1; // PV[k-1] = Thlt[k-1]
static double xk_2; // PV[k-2] = Thlt[k-2]
static double yk_1; // y[k-1] = Gamma[k-1]
static double yk_2; // y[k-2] = Gamma[k-1]
static double lpf_1; // lpf[k-1] = LPF output[k-1]
static double lpf_2; // lpf[k-2] = LPF output[k-2]
void init_pid2(pid_params *p)
/*--
Purpose : This function initialises the PID controller, based on
the new Type A PID controller.
Variables: p: pointer to struct containing all PID parameters
Ts 2.Td
k0 = Kc.(1 + ---- + ------------)
2.Ti Ts + 2.k_lpf
Ts.Ts/Ti – 4.k_lpf - 4.Td
k1 = Kc.(-------------------------)
Ts + 2.k_lpf
2.k_lpf – Ts + Ts.Ts/(2.Ti) – k_lpf.Ts/Ti + 2.Td
K2 = Kc.(--)
Ts + 2.k_lpf
Returns : No values are returned
--*/
{ double alfa = p->ts + 2.0 * p->k_lpf; // help variable
p->ts_ticks = (int)((p->ts * 1000.0) / T_50MSEC);
if (p->ts_ticks > TWENTY_SECONDS)
{ p->ts_ticks = TWENTY_SECONDS;
} if (p->ti > 0.001)
{ p->k0 = p->kc * (+1.0 + (p->ts / (2.0 * p->ti))
 + (2.0 * p->td / alfa));
p->k1 = p->kc * (p->ts * p->ts / p->ti - 4.0 * p->k_lpf - 4.0 * p->td);
p->k2 = 2.0 * p->k_lpf - p->ts + p->ts * p->ts / (2.0 * p->ti);
p->k2s = 2.0 * p->ts + p->ts * p->ts / (2.0 * p->ti);
p->k2s -= p->kc / alfa;
} if
//--
// u[k] = lpf1*u[k-1] + lpf2*u[k-2] +
//--
p->lpf1 = 4.0 * p->k_lpf / alfa;
p->lpf2 = (p->ts - 2.0 * p->k_lpf) / alfa;
} // init_pid2()
void pid_reg2(double xk, double *yk, double tset, pid_params *p, int vrg)
/*==
Function name: init_pid2(), pid_reg2()
init_pid3(), pid_reg3(), init_pid4(), pid_reg4()
Author : E. vd Logt
File name : $Id: pid_reg.c,v 1.6 2004/05/13 20:51:00 emile Exp $
Purpose : This function implements the updated PID controller.
It is an update of pid_reg1(), derived with Bilinear
Transformation. It is a Type A controller.
This function should be called once every TS seconds.
Variables:
xk : The input variable x[k] (= measured temperature)
*yk : The output variable y[k] (= gamma value for power electronics)
* */
*/
PID Controller Calculus for HERMS home-brewing system

```c
double ek; // e[k]
ek = tset - xk; // calculate e[k]
if (vrg) {
    *yk = p->lpf1 * yk_1 + p->lpf2 * yk_2; // y[k] = p1*y[k-1] + p2*y[k-2]
    *yk += p->k0 * ek; // ... + k0 * e[k]
    *yk += p->k1 * ek_1; // ... + k1 * e[k-1]
    *yk += p->k2 * ek_2; // ... + k2 * e[k-2]
} else *yk = 0.0;

ek_2 = ek_1; // e[k-2] = e[k-1]
ek_1 = ek; // e[k-1] = e[k]

// limit y[k] to GMA_HLIM and GMA_LLIM
if (*yk > GMA_HLIM) {
    *yk = GMA_HLIM;
} else if (*yk < GMA_LLIM) {
    *yk = GMA_LLIM;
}

yk_2 = yk_1; // y[k-2] = y[k-1]
yk_1 = *yk; // y[k-1] = y[k]
}

void init_pid3(pid_params *p)
/*------------------------------------------------------------------
Purpose  : This function initialises the Allen Bradley Type A PID
controller.
Variables: p: pointer to struct containing all PID parameters

Kc.Ts
k0 = -----   (for I-term)
    Ti
    k1 = Kc . --  (for D-term)
    Ts
The LPF parameters are also initialised here:
lpf[k] = lpf1 * lpf[k-1] + lpf2 * lpf[k-2]
Returns  : No values are returned
------------------------------------------------------------------*/
{
p->ts_ticks = (int)((p->ts * 1000.0) / T_50MSEC);
if (p->ts_ticks > TWENTY_SECONDS)
    p->ts_ticks = TWENTY_SECONDS;
if (p->ti == 0.0)
    p->k0 = 0.0;
else
    p->k0 = p->kc * p->ts / p->ti;
else
    p->k1 = p->kc * p->td / p->ts;
p->lpf1 = (2.0 * p->k_lpf - p->ts) / (2.0 * p->k_lpf + p->ts);
p->lpf2 = p->ts / (2.0 * p->k_lpf + p->ts);
}

void pid_reg3(double xk, double *yk, double tset, pid_params *p, int vrg)
/*------------------------------------------------------------------
Purpose  : This function implements the type Allen Bradley Type A PID
controller. All terms are dependent on the error signal e[k].
The D term is also low-pass filtered. This function should be called once every TS seconds.
Variables:
    xk : The input variable x[k] (= measured temperature)
    *yk : The output variable y[k] (= gamma value for power electronics)
    tset : The setpoint value for the temperature
    *p : Pointer to struct containing PID parameters
    vrg: Release signal: 1 = Start control, 0 = disable PID controller
Returns  : No values are returned
------------------------------------------------------------------*/
{

tset = The setpoint value for the temperature
*p : Pointer to struct containing PID parameters
vrg: Release signal: 1 = Start control, 0 = disable PID controller

Returns : No values are returned
------------------------------------------------------------------*/
```
double ek; // e[k]
double lpf; //LPF output

ek = tset - xk; // calculate e[k] = SP[k] - PV[k]

// Calculate Lowpass Filter for D-term
lpf = p->lpf1 * lpf_1 + p->lpf2 * (ek + ek_1);

if (vrg)
{
 // Calculate PID controller:
 // y[k] = y[k-1] + Kc*(e[k] - e[k-1] +
 // Ts*e[k]/Ti +
 // Td/Ts*(lpf[k] - 2*lpf[k-1]+lpf[k-2]))
 p->pp = p->kc * (ek - ek_1); // y[k] = y[k-1] + Kc*(PV[k-1] - PV[k])
 p->pi = p->k0 * ek; // + Kc*Ts/Ti * e[k]
 p->pd = p->k1 * (lpf - 2.0 * lpf_1 + lpf_2);
 *yk += p->pp + p->pi + p->pd;
}
else *yk = 0.0;

ek_1 = ek; // e[k-1] = e[k]
lpf_2 = lpf_1; // update stores for LPF

// limit y[k] to GMA_HLIM and GMA_LLIM
if (*yk > GMA_HLIM)
{
 *yk = GMA_HLIM;
}
else if (*yk < GMA_LLIM)
{
 *yk = GMA_LLIM;
}
else
{
 // pid_reg3()
}

/* --
Purpose : This function initialises the Allen Bradley Type C PID controller.
Variables: p: pointer to struct containing all PID parameters
Returns : No values are returned
--*/

void init_pid4(pid_params *p)
{
 init_pid3(p); // identical to init_pid3()
}

/* --
Purpose : This function implements the Takahashi PID controller, which is a Type C controller: the P and D term are no longer dependent on the set-point, only on PV (which is Thlt).
 This function should be called once every TS seconds.
Variables:
 xk : The input variable x[k] (= measured temperature)
 *yk : The output variable y[k] (= gamma value for power electronics)
 tset : The setpoint value for the temperature
 *p : Pointer to struct containing PID parameters
 vrg: Release signal: 1 = Start control, 0 = disable PID controller
Returns : No values are returned
--*/

void pid_reg4(double xk, double *yk, double tset, pid_params *p, int vrg)
{
 double ek; // e[k]
double lpf; //LPF output

 ek = tset - xk; // calculate e[k] = SP[k] - PV[k]

 if (vrg)
 {
 // Calculate PID controller:
 // y[k] = y[k-1] + Kc*(PV[k-1] - PV[k]) +
 // Ts*e[k]/Ti +
 // Td/Ts*(2*PV[k-1] - PV[k] - PV[k-2]))
 p->pp = p->kc * (xk_1 - xk); // y[k] = y[k-1] + Kc*(PV[k-1] - PV[k])
 p->pi = p->k0 * ek; // + Kc*Ts/Ti * e[k]
 p->pd = p->k1 * (2.0 * xk_1 - xk - xk_2);
 *yk += p->pp + p->pi + p->pd;
 }
 else (*yk = p->pp = p->pi = p->pd = 0.0;)

 xk_2 = xk_1; // PV[k-2] = PV[k-1]
xk_1 = xk; // PV[k-1] = PV[k]

// limit y[k] to GMA_HLIM and GMA_LLIM
if (*yk > GMA_HLIM)
 (*yk = GMA_HLIM;)
else if (*yk < GMA_LLIM)
 (*yk = GMA_LLIM;)
else
 // else
// pid_reg4()